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Abstract

A vibration isolator consisting of a vertical linear spring and two nonlinear pre-stressed oblique springs is considered in

this paper. The system has both geometrical and physical nonlinearity. Firstly, a static analysis is carried out. The softening

parameter leading to quasi-zero dynamic stiffness at the equilibrium position is obtained as a function of the initial

geometry, pre-stress and the stiffness of the springs. The optimal combination of the system parameters is found that

maximises the displacement from the equilibrium position when the prescribed stiffness is equal to that of the vertical

spring alone. It also satisfies the condition that the dynamic stiffness only changes slightly in the neighbourhood of the

static equilibrium position. For these values, a dynamical analysis of the isolator under asymmetric excitation is performed

to quantify the undesirable effects of the nonlinearities. It includes considering the possibilities of the appearance of period-

doubling bifurcation and its development into chaotic motion. For this purpose, approximate analytical methods and

numerical simulations accompanied with qualitative methods including phase plane plots, Poincaré maps and Lyapunov

exponents are used. Finally, the frequency at which the first period-doubling bifurcation appears is found and the effect of

damping on this frequency determined.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The use of passive isolators is one of the most common methods of controlling undesirable vibrations [1,2].
The performance characteristics of passive linear isolators have been widely studied [3–5]. In the simplest case
when a mass m is supported by a linear spring of stiffness k on a rigid foundation, the isolator provides
efficient attenuation of harmonic vibrations of frequency o, if o4

ffiffiffi
2
p

o0, where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural

frequency of the system. This indicates that the lower the static stiffness and hence natural frequency, the
wider the isolation region and the more advantageous its application. However, low static stiffness causes a
large static deflection. This disadvantage can be overcome by adding oblique springs in order to obtain a high
static stiffness, small static displacement, small dynamic stiffness, and hence low natural frequency [2,6].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. A three-spring model of a QZS mechanism. The oblique springs have a cubic softening nonlinearity and pre-stress. The vertical

spring is linear.
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Moreover, acting as a negative stiffness, the oblique springs can yield zero dynamic stiffness, i.e. the so-called
quasi-zero stiffness (QZS) mechanism can be established. This fact about the benefits of nonlinearity as well as
the fact that many practical isolators exhibit nonlinear behaviour [1,7–10], has given rise to a growing interest
in the study of nonlinear isolators [11–16].

In a previous study [17], a static analysis of the QZS isolator shown in Fig. 1 was presented, in which all
springs were assumed to be linear and unstressed. It was concluded there that, although yielding QZS, the
oblique springs detrimentally add stiffness to the vertical spring outside some displacement range and the
system becomes stiffer for large excursions from the equilibrium position. The following analysis is a natural
continuation of that study but with nonlinear pre-stressed oblique springs. So, unlike the previous study of a
geometrically nonlinear but physically linear system, the configuration discussed in this paper is represented by
both a geometrically and physically nonlinear model. The aim is to demonstrate the way in which the
attachment of nonlinear oblique springs can improve the performance of a simple linear spring, and also how
the introduction of physical nonlinearity in these springs can offer some benefits. The motivation is twofold.
Firstly, a system configuration, which yields QZS at the equilibrium position without the detriment arising in
the physically linear system is sought. Secondly, dynamic analysis of the isolator model subjected to
asymmetric harmonic excitation is carried out in order to determine its behaviour.

2. Static analysis

Consider a simple model of the isolator shown in Fig. 1. Two nonlinear oblique springs are assumed to have
physical nonlinearity in that they are softening, with linear stiffness k1 and cubic softening nonlinear stiffness
coefficient k3. In addition, they are pre-stressed, i.e. compressed by length d. These springs are connected at
point O with a vertical unstressed linear spring of stiffness k2. The geometry of the system is defined by the
parameters a and h, while the coordinate x defines the displacement from the initial unloaded position. The
relationship between the vertical applied force f and the resulting displacement x can be found by means of the
principal of virtual work. This requires the total work by the force f, and the reactions of the oblique springs in
the x direction f1x, and the vertical spring f2, to be zero for a virtual displacement dx, i.e.

ðf þ 2f 1x þ f 2Þdx � 0. (1)

The restoring force of the oblique spring f1 is given by

f 1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� d

� �
� k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� d

� �3

. (2)

Its scalar component in the x direction is

f 1x ¼ f 1

h� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q . (3)
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The reaction of the vertical spring is

f 2 ¼ �k2x. (4)

Combining Eqs. (1)–(4) gives

f ¼ k2xþ 2k1ðh� xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
þ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðh� xÞ2
q � 1

0
B@

1
CAþ 2k3

ðh� xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� d

� �3

. (5)

Introducing the dimensionless parameters

f̂ ¼
f

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p ; a ¼
k1

k2
; â ¼

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p ; x̂ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2
p ; d̂ ¼

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p ; b ¼
k3ða

2 þ h2
Þ

k2
, (6a2f)

Eq. (5) becomes

f̂ ¼ x̂þ 2aGðD� 1Þ � 2bGP2ðD� 1Þ3, (7)

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

p
� x̂, D ¼ ðd̂þ 1Þ=P and P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

p
x̂þ 1

q
.

Differentiating Eq. (7) with respect to x̂ gives the non-dimensional stiffness of the system

K̂ ¼ 1þ 2a 1� â2 D
P2

� �
� 2bðD� 1Þ2 ð1� DÞð3G2 þ â2

Þ þ 3G2D
� �

. (8)

In operation, the system is loaded with a mass such that at the static equilibrium position x̂ ¼ x̂eð Þ the

oblique springs are horizontal, and x̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

p
. The stiffness of the system is zero provided that

bq ¼
a

½1� âþ d̂�2
�

â

2½1� âþ d̂�3
, (9)

where the subscript q denotes QZS. This relationship gives the value of the softening parameter of the oblique
springs as a function of the initial geometry (parameter â), pre-stress (parameter d̂) and stiffness of the springs
(parameter a), which leads to a QZS system. The influence of these parameters on the value of bq is shown in
Fig. 2 for different values of a. These surfaces illustrate how the optimum softening parameter of the nonlinear
springs bq is dependent on the rest of the system parameters. It should be noted that the optimum value of bq

changes profoundly depending upon the values of â and d̂.
q q q

Fig. 2. The influence of the pre-stress parameter, d̂, and the initial geometry parameter, â, on the softening parameter of the nonlinear

springs bq for the QZS system and different values of the parameter a: (a) a ¼ 0.3; (b) a ¼ 0.5 and (c) a ¼ 0.75.
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In the special case when the oblique springs are linear but pre-stressed, Eq. (9) reduces to

d̂q ¼
âð1þ 2aÞ

2a
� 1. (10)

If the oblique springs are linear and unstressed, QZS is ensured when

aq ¼
â

2ð1� âÞ
, (11)

which shows that if the angle of inclination of the springs decreases, i.e. the parameter â increases, the value of
a which yields QZS also increases. This result is the same as that obtained in Ref. [17].

2.1. Optimisation of the system

In addition to the isolator being a QZS system, it is desirable for it to have a wide range of non-dimensional
displacements d̂ from the static equilibrium position for which the non-dimensional stiffness is less than a
prescribed low value K̂p. By substituting x̂K̂¼K̂p

¼ x̂e � d̂ into Eq. (8), these displacements are found to satisfy

6bqẑ5 � 12ðd̂þ 1Þbqẑ4 þ K̂ � 1� 2aþ 6ðd̂þ 1Þ2bq � 4â2bq

h i
ẑ3 þ 6g2ðd̂þ 1Þbqẑ2

þ 2aâ2
ðd̂þ 1Þ � 2g2ðd̂þ 1Þ3bq ¼ 0, ð12Þ

where ẑ2 ¼ d̂
2
þ â2.

There is no explicit analytical solution of Eq. (12). It can, however, be solved numerically, constraining various
parameters. The parameters a, â and d̂ are chosen from the set a 2 1=10; 10

� �
; â 2 ½0; 1� and d̂ 2 ½0; 1�. Among all

the combinations of these parameters and the parameter bq calculated using Eq. (9), only those for which the
parameter bq is positive were taken into account (only then there exists a softening spring). The optimisation
criteria included the achievement of the largest displacement from the static equilibrium position, at which the
prescribed stiffness was equal to that of the vertical spring alone, i.e. K̂ ¼ 1, the condition that the stiffness should
not be negative, and the requirement that the stiffness only changes slightly in the neighbourhood of the
equilibrium position (the tolerance of DK̂ ¼ 0:0025 for Dŷ ¼ 0:01 was introduced, where ŷ ¼ x̂� x̂e).

The results of the optimisation are aopt ¼ 0:51; âopt ¼ 0:5 and d̂opt ¼ 0:89 (for which bqopt ¼ 0:1709). These
values are used to plot the stiffness of the system using Eq. (8) with respect to the coordinate system ŷ. This
can be seen in Fig. 3 as the solid line, which represents the optimised system that has both geometrical and
Fig. 3. Non-dimensional stiffness of the system with the linear oblique springs (dashed line), linear pre-stressed oblique springs

(dashed–dotted line) and nonlinear pre-stressed springs (solid line). The circles denote the stiffness at ŷ ¼ �x̂e.
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Fig. 4. Structural model of the isolator in operation.
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physical nonlinearity. In addition, the results of the analytical optimisation of the linear system in Ref. [17]
â ¼ ð2=3Þ3=2 and the parameter a calculated on the basis of Eq. (11) are used to plot the corresponding stiffness
in Fig. 3 as a dashed line. As well as this, this stiffness is plotted in Fig. 3 for the case when the oblique springs

are linear but pre-stressed with d̂ ¼ 0:5 (dashed–dotted line). In this case, Eq. (10) was used as well as Eq. (12),

which yields â ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ d̂

p
. The circles in Fig. 3 denote the stiffness given by Eq. (8) calculated at ŷ ¼ �x̂e. It

can be seen that the use of nonlinear pre-stressed oblique springs can be beneficial, because it can result in a
smaller stiffness for larger displacements from the static equilibrium position and, additionally, it can yield a
very small stiffness in the neighbourhood of the static equilibrium position. In this way, the limitation of the
linear system can be overcome and, moreover, low dynamic stiffness in the neighbourhood of the equilibrium
position can be achieved.

3. Dynamic behaviour of the QZS system

When in operation, the isolator considered supports a mass m, initially in the static equilibrium position as
shown in Fig. 4. To include the influence of damping, a viscous damper, with damping coefficient c2, is added
in parallel with the vertical spring. The excitation force fd may be asymmetric, i.e. it can be the sum of a
harmonic excitation F cos ot and a constant force corresponding to a static force Fs. Ideally, the system will
only be subject to harmonic excitation about the static equilibrium position. However, in some circumstances
there may be an additional ‘‘static’’ loading to the isolated mass due to very slowly varying inertia forces,
because of the acceleration of an aircraft or vehicle in which the isolator is situated, for example.

Assuming that displacements are small, the scalar component defined by Eq. (3) in the y direction can be
expanded using the Maclaurin series up to the third order. Further, taking into account the QZS condition (9),
the dimensionless parameters in Eq. (6) and

o2
0 ¼

k2

m
; t ¼ o0t; z ¼

c2o0

2k2
; g ¼ �2bþ 3b

1þ d̂
â
þ a

1þ d̂

â3
� b
ð1þ d̂Þ3

â3
; O ¼

o
o0
; F̂ s ¼

Fs

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p , (13)

the non-dimensional equation of motion can be approximated by asymmetric Duffing’s equation with no
linear term and hardening nonlinearity

€̂yþ 2z _̂yþ gŷ3
¼ F̂ ðcos Otþ rf Þ, (14)

where

rf ¼
F̂ s

F̂
. (15)

The asymmetric Duffing oscillator has been the subject of numerous analytical and numerical investigations
[18–23]. It has been shown that in this oscillator chaotic motion is preceded by a sequence of period-doubling
bifurcations. In the case when the static force F̂ s is zero, Eq. (14) describes a symmetric Duffing oscillator. In
Refs. [19,21,24,25], it has been shown that the route to or from chaos for this system is associated with the loss
of stability of the third superharmonic resonant response and that this transition is a sharp one. So, in both the
asymmetric and symmetric systems chaotic motion can appear, this being related to the loss of stability of the
secondary resonance and the separation of two periodic solutions with different periods. The appearance of
such motion in any isolation system, as in this one, is undesirable, because it can restrict its operating range
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and cause irregular behaviour. The case of symmetric excitation (rf ¼ 0) is outside the scope of this paper.
Thus, the following analysis is aimed at obtaining the boundaries of an operational regime of the isolator
under asymmetric excitation with respect to the principal resonance curves. These boundaries are established
by examining the development of period-doubling bifurcation. Approximate analytical methods and
numerical simulations together with qualitative methods, such as phase plane plots, Poincaré maps and
Lyapunov exponents, are used.

3.1. Approximate periodic solution, stability and bifurcation analysis

An approximate solution for the equation of motion given by Eq. (14) is found by applying the harmonic
balance method. The solution is asymmetrical, comprising a bias (DC) term and harmonics (even and odd). In
the region of the principal resonance, the lowest harmonic dominates, while higher harmonics are relatively
small and can be omitted. Hence, the response of the system at the frequency of excitation, the so-called
T-periodic solution, is assumed of the form

ŷ0ðtÞ ¼ ŷ0ðtþ TÞ ¼ A0 þ A1 cosðOtþ yÞ, (16)

where T ¼ 2p/O, and A0, A1 and y satisfy the following system of nonlinear algebraic equations:

gA3
0 þ

3

2
gA0A2

1 ¼ rf f̂ ,

�A1O2 þ 3gA2
0A1 þ

3

4
gA3

1 ¼ f̂ cos y,

�2zA1O ¼ f̂ sin y.ð17a2cÞ

The solution of this system of equations is shown in Fig. 5 in the form of the resonance curves for A0 and A1

for rf ¼ 0.2, z ¼ 0.025 and different values of the non-dimensional magnitude of the harmonic force:
F̂ ¼ 0:1; 0:5 and 1.
Fig. 5. (a) Resonance curves of the DC term A0; (b) resonance curves of the harmonic term A1 for rf ¼ 0.2, z ¼ 0:025 and different values

of the magnitude of the harmonic excitation: F̂ ¼ 0:1 (dashed–dotted line), F̂ ¼ 0:5 (dashed line) and F̂ ¼ 1 (dotted line).
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In order to characterise the nature of the behaviour of the system in the neighbourhood of the solution given
by Eq. (16), a perturbed solution is considered:

ŷ1ðtÞ ¼ ŷ0ðtÞ þ uðtÞ (18)

for which the linear variational equation can be presented in the form of Hill’s equation [26,27]:

€uþ 2z _uþ ðs0 þ s0 cos Yþ s02YÞu ¼ 0, (19)

where

s0 ¼ 3g A2
0 þ

A2
1

2

� �
; s1 ¼ 6gA0A1; s2 ¼

3

2
gA2

1; Y ¼ Otþ y. (20)

It can be seen that there are two parametric excitations in Eq. (19): one with the frequency O and the other
one with the frequency 2O. In a parametrically excited system, resonance occurs whenever a driving frequency
is equal to 2

ffiffiffiffiffi
s0
p

=n, where n is an integer [26–28]. The first unstable region occurs for n ¼ 1, i.e. close to the

frequency O � 2
ffiffiffiffiffi
s0
p

, i.e. O � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g A2

0 þ A2
1=2

	 
q
. According to Floquet theory, the particular solution of

Eq. (19) to a first approximation can be sought in the form uðtÞ ¼ emtvðtÞ, where m is the characteristic
exponent and vðtÞ is a periodic function with periods T and T/2. The solution for uðtÞ is stable (respectively,
unstable) if the real part of m is negative (positive); on the boundary between stable and unstable regions the
real part of m is zero. Assuming the function vðtÞ to be the first term of a Fourier series at the stability
boundary m ¼ 0, the perturbation can be written as

uðtÞ ¼ b cos
O
2
tþ f

� �
. (21)

The form of Eq. (21) indicates that bifurcation from a T-periodic solution given by Eq. (16) to a 2T-periodic
solution can appear. Inserting Eq. (21) into Eq. (19) and applying the harmonic balance method, a set of linear
homogenous equations is obtained, which can be written in matrix form as

�
O2

4
þ s0 þ

s1
2

cos y �zOþ
s1
2

sin y

�zO�
s1
2

sin y
O2

4
� s0 þ

s1
2

cos y

2
6664

3
7775

cos f

sin f

( )
¼ 0. (22)

Non-trivial solutions exist if the determinant of the matrix in Eq. (22), denoted by D0, vanishes

D0ðO2Þ ¼ 3g A2
0 þ

A2
1

2

� �
�

O2

4

� �2
þ z2O2 � 9g2A2

0A2
1 ¼ 0. (23)

This determinant provides a characteristic equation for m. Its real roots occur if D0ðO2Þo0 [27,29]

3g A2
0 þ

A2
1

2

� �
�

O2

4

� �2
þ z2O2 � 9g2A2

0A
2
1o0. (24)

On combining Eqs. (17) and (23), the frequencies O1 and O2 at which period doubling occurs can be found.
Using Eq. (24), a frequency region between these values can be checked to see whether or not it corresponds to
instability of the T-periodic solution. However, the existence of the solutions for these frequencies will depend

on the values of the parameters rf and F̂ . This is investigated in Section 3.1.1.

3.1.1. Effects of the system parameters

In order to determine the existence of the solutions of Eqs. (17) and (23), they are solved numerically and the
number of solutions is shown in Fig. 6 in the F̂ � rf plane for z ¼ 0:025, DF̂ ¼ 0:01 and Drf ¼ 0:01. The case
when there are two frequencies at which period doubling occurs is denoted by ‘‘o’’; the case when there is no
solution, i.e. period doubling does not occur is denoted by ‘‘� ’’. It can be seen that in the majority of cases
period doubling occurs. Only when the constant force is small in comparison to the harmonic force (rf ¼ 0.01),
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Fig. 6. The number of the values of the frequency at which period doubling occurs for z ¼ 0:025 as a function of the magnitude of

harmonic force F̂ and different values of the ratio rf: ‘‘o’’ two values (one unstable region); ‘‘� ’’ no values.
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period doubling does not appear regardless of the value of F̂ . In addition, the smaller the magnitude of the
harmonic force, period doubling does not appear for more values of the constant force.

The unstable regions are denoted in Fig. 5 with a thick black solid line. They lie on the lower non-resonant
branches of A1(O) and associated upper branch of A0(O). The frequencies satisfying Eqs. (17) and (23) are
denoted by O1 and O2 (for the sake of clarity they are shown just for the case F̂ ¼ 0:5).
3.2. Numerical simulations

The analysis in the previous section shows that there is a possibility of period-doubling bifurcation and gives
the system parameters at which it may occur. To verify the results of the approximate theory, numerical
simulations were carried out for the equation of motion given by Eq. (14) and some selected values of the
system parameters. A very fine frequency resolution to order 10�6 was required but the reported values are
approximated to order 10�2.

The bifurcation diagram corresponding to F̂ ¼ 0:5; rf ¼ 0:2 and z ¼ 0:025 is plotted in Fig. 7 for decreasing
frequency from O ¼ 1.2. It can be seen that by decreasing frequency the first period-doubling bifurcation is
observed at O ¼ 1.19, followed by higher period doublings 4T at O ¼ 1.07 and 8T at O ¼ 1.05. This confirms
the appearance of a cascade of period-doubling bifurcations 2nT ; n ¼ 0; 1; 2; . . ., developing into chaotic
motion at O ¼ 1.04. Chaotic behaviour can also be verified by examining the Lyapunov exponents of the
system (l) [30]. For a d-dimensional dynamical system, there is a spectrum of d Lyapunov exponents. They
give the rate of divergence (lo0) or convergence (lo0) of nearby trajectories in phase space. One positive
Lyapunov exponent results in an exponential separation of trajectories, which corresponds to chaotic
behaviour. Each type of response is characterised in the phase projections and with Poincaré maps, which are
shown in Fig. 8. The sampling time for a Poincaré map was T ¼ 2p=O, so that the number of points N marked
indicates the period of the response NT.

It can be seen that there is a good agreement between the value of the first period-doubling bifurcation obtained
in this approach and that one found previously using Eqs. (17) and (23) with O2 ¼ 1.19 (see Fig. 5a and b).

Since the system being considered is three dimensional, it has three Lyapunov exponents. When the
behaviour is chaotic, they are l140; l2 ¼ 0; l3o0 and the Lyapunov (fractal) dimension of the chaotic
attractor can be estimated by [30]

df ¼ 2þ
l1
l3j j

. (25)
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Fig. 7. Bifurcation diagram of the system for F̂ ¼ 0:5; rf ¼ 0:2 and z ¼ 0:025 for decreasing frequency O.
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When the frequency O decreases and passes O ¼ 1.04, the Lyapunov exponents are l1 ¼
0:043; l2 ¼ 0; l3 ¼ �0:093, which confirms the appearance of chaos. Here, the Lyapunov dimension is
df ¼ 2:4624. Not being an integer, it reveals that the system response is extremely sensitive to initial
conditions.

3.3. Unstable frequency

The appearance of the first period-doubling bifurcation on decreasing frequency is of practical importance
for the isolator. When the system enters the unstable region, and beyond this point chaotic motion can appear,
as well as sudden and significant change of the amplitude of vibration. Hence, the first period-doubling
bifurcation point can be considered as an important frequency [31,32]. Since the analysis given in the previous
section has shown the accuracy of the analytical results given in Eqs. (17) and (23), they can be used to plot the
graph shown in Fig. 9. This graph can be used to determine the frequency at which period doubling will
emerge depending on the value of rf and for F̂ ¼ 0:5 (dotted line), F̂ ¼ 0:75 (dashed–dotted line) and F̂ ¼ 1
(dashed line).

A numerical study was carried out to determine the effect of the damping ratio on the onset of the period-
doubling bifurcation point. The critical value of this parameter zcr for which period doubling does not exist is
shown in Fig. 10 as a function of the parameter rf for different values of F̂ . It reveals that a suitable choice of
the damping coefficient ðzXzcrÞ can entirely eliminate the possibility of the appearance of period-doubling
bifurcation. Thus, damping can be used to suppress this behaviour of the system.

4. Conclusions

A vibration isolator consisting of a vertical linear spring and two additional springs that have both
geometrical and physical nonlinearity has been considered in this paper. The additional springs are oblique,
pre-stressed and have a softening characteristic. Once the system is optimised it has quasi-zero dynamic
stiffness at the equilibrium position, which has been obtained as a function of the initial geometry, pre-stress
and the stiffness of the springs. It has been shown that the use of nonlinear pre-stressed oblique springs can
improve the static characteristics of a QZS mechanism, i.e. it can produce a smaller stiffness at larger
displacements about the static equilibrium position than the system with the linear springs. Simultaneously, it
can yield a very small stiffness around the equilibrium position.

However, such a nonlinear vibration isolator under an asymmetric excitation can exhibit period-doubling
bifurcations. In order to characterise this behaviour with respect to the system parameters and the principal
resonance, a dynamical analysis has been carried out. This analysis has led to the conclusion that in this
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Fig. 8. Phase projections and Poincaré maps for F̂ ¼ 0:5; rf ¼ 0:2 and z ¼ 0:025: (a) period-one motion O ¼ 1.2; (b) period-two

motion O ¼ 1.19; (c) period-four motion O ¼ 1.07; (d) period-eight motion O ¼ 1.05 and (e) chaotic motion O ¼ 1.04,

l1 ¼ 0:043; l2 ¼ 0; l3 ¼ �0:093 and df ¼ 2:4624.
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Fig. 9. The frequency at which the unstable region begins (O2) as a function of the parameter rf for z ¼ 0:025 and different values of the

dimensionless magnitude of the harmonic excitation: F̂ ¼ 0:5 (dotted line), F̂ ¼ 0:75 (dashed–dotted line) and F̂ ¼ 1 (dashed line).

Fig. 10. The critical value of the damping ratio zcr as a function of the parameter rf for and different values of the dimensionless

magnitude of the harmonic excitation: F̂ ¼ 0:5 (dotted line), F̂ ¼ 0:75 (dashed–dotted line) and F̂ ¼ 1 (dashed line).

I. Kovacic et al. / Journal of Sound and Vibration 315 (2008) 700–711710
system period-doubling bifurcations are likely to happen within a specific frequency range. This behaviour is
characterised by regions with increasing periodicity of the response, resulting in chaotic behaviour. However,
for some values of the system parameters (the magnitudes of the harmonic excitation and constant forces and
damping) period doubling does not occur.
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